2022年04月06日

春ですね♪♪

久しぶりの投稿となります、かも店Iです。

気温が上がってきて、すっかり春になってきましたね。
かも店の裏の神社にもきれいに桜が咲いていますよぉぉ(^_-)-☆
お花見日和が続いていますが、まだまだ朝晩気温が下がってますので、
皆さん体調お気を付け下さい♪

お花見をしていると、おネコ様がテクテクと、、
どうやら住み着いている猫のようですが、なぜか私にだけ、
シャーーーーーーっと威嚇されてしまいました。
IMG_0014.JPG
IMG_0011.JPG
やっぱり猫は苦手なIでした(-_-;)
posted by 正木浩二 at 15:57| Comment(0) | 豆知識

2022年03月29日

必ず興味を持ちます!

ようやく、大学入試が終わりましたね。
 4月から大学生となる人たちへ。おめでとうございます!
大学でより専門的な学問に励んでください。(大学の数学は本当に難しいバッド(下向き矢印)
 残念ながら、合格できず、もう一年頑張る人たちへ。
時間があると思わないでください。時間はありません、必死で頑張りましょう。もう一年もありませんよ。共通テストまで10か月です!

 さて、前回の記事で子供に興味を持たせるとありました。
私は少し、大きな子供たちの興味を引こうと思います。
そう、受験生諸君、君たちにです!
ここから、受験勉強をする本人、または親御さんへ。
やはり、数学、英語が大事です。なかなか点数が上がりにくい反面、得意科目にすると非常に心強い味方となってくれます!物理は数学が出来れば、ある程度結果がついてきやすい科目、化学とくに有機はそんなに時間もかかりませんし、やればやるだけ点数は伸びます!社会は現代社会が点を取りやすいですが、難関国立大学では選択肢としてない所が多いので、注意しましょう。オススメは地理です。比較的暗記が少なく、考えて解けるので、理系向きだと個人的には思っています。国語は余裕があれば、古文に手を出しましょう。短期間で点数アップを狙えます。
 では、興味を持つ話に入ります。(前置きが長い)

a を実数とする.C を放物線y = x2 (xの二乗です)とする.
(1) 点A(a,-1) を通るようなC の接線は,ちょうど2 本存在することを示せ.
(2) 点A(a,-1) からC に2 本の接線を引き,その接点をP,Q とする.直線PQ の
方程式はy = 2ax + 1 であることを示せ.
(3) 点A(a,-1) と直線y = 2ax + 1 の距離をL とする.a が実数全体を動くとき,L
の最小値とそのときのa の値を求めよ.

どうですか?興味をそそる問題ですね。
すべての受験生諸君へ。
今は解けなくても大丈夫です。
でも、、、どうか10か月後には軽く解けるようになってください。心から応援しております。
来年の皆様に『春』が訪れますように。


偉そうなことを言っておきながら、この間、子供に確率漸化式を聞かれ間違っていた かも店F

posted by 正木浩二 at 14:20| Comment(0) | 豆知識

2022年02月08日

歴史オタクの小言

こんにちは。
立春が過ぎましたが、まだまだ寒い日が続きますね。

さて、これまで私が投降した記事をご覧になった方はもうお分かりかと思われますが、私は日本史が好きです。
特に近代史が好きです。幕末・明治維新〜昭和初期頃ですね。
実際の歴史の内容や人物が好きですが、歴史小説も好きです。(最近は全然読めていませんが…)
小説は読んでいて面白いし楽しいですよね。
ただ、歴史ものになると面白いが故に、小説内の創作の設定が史実と思われて定着してしまう、という事が多々あります。特に司●●太郎さんの作品に多い印象です。
小説以外にも誰かが話を盛って語り続けて定着してしまう等々…

創作する事自体は良いのですが、それをさも史実であるかのように語る(騙る)のがよろしくないのです。
とはいえ、既に史実として語られてきた有名エピソードが実は創作であった、という事がしばしばあります。知名度の高い人物ほどこれが多いですね。織田信長とか土方歳三とか坂本龍馬とか。
歴史が好きな方ならお分かり頂けるかと思いますが、やたら知識をひけらかしてマウント取ってくる人いませんか。
私はこのタイプの人が苦手なんです。
聞いてもないのに何なの?しかもその知識、司●●太郎の創作だし…ドヤるのやめて〜(><)
と思ってしまうんですよね。
個人的に一番許せないのは、その人が好きな人物をより良く魅せたいが為に、別の人物を貶める事です。
坂本龍馬を上げて、中岡慎太郎を下げる。
土方歳三を上げて、大鳥圭介を下げる。
みたいな感じの人、多いです。本当に。
私は中岡慎太郎さんが推し偉人TOP5に入ってるので、これをやられるとガチギレします。
歴史上人物のみならず、現代の人に対してもやめてくださいね。

歴史を好きになったり興味を持つのはとても良い事です。
けど、正しい歴史とエンターテイメントの歴史を混同しないように気を付けてくださいね。というお話でした。


山岡鉄舟氏を知らずに幕末に詳しいとか言わないでほしいと思ってしまう面倒くさい歴オタ
Uでした
posted by 正木浩二 at 17:27| Comment(0) | 豆知識

2022年01月05日

あけましておめでとうございます

新年あけましておめでとうございます。
本年もよろしくお願いいたします。

さて、久しぶりの投稿となりましたが、特に書くこともなく、すみません。
次の記事になることを考え中です。

もうすぐ、共通テスト(センター試験)ですね。受験生の皆様、最後の追い込みがんばりましょう!
私は理系しか分かりませんが(かなり前ですけど)、受験生諸君!点をとりやすいのは、地理です。
意外に思うかもしれませんが、社会の中では範囲も比較的狭く、暗記で勝負できます。
英語、数学をおさえておくのはもちろんですよ。あと物理も比較的点数をとりやすいので、最後のひと踏ん張り、気合で乗り切りましょう。共通テストが終われば、後は数学が大事になってきますよ!浪人生に勝てるとするならば、数学が可能性が高いと思います。現役の受験生は共通テストが終われば、数学に時間をとってみてはどうでしょうか?(もちろん、受ける学部によりますが・・・)
この時期になると、やっぱり思い出しますね〜。今となっては、いい思い出です。

センター試験はマークシート。積分の問題で、そんなアプローチないやろという問題で戸惑ってしまった、
かも店F 記述やったら、楽勝やったのに〜
posted by 正木浩二 at 08:58| Comment(0) | 豆知識

2021年11月30日

秒で反論します。

先ほどのUの記載でタイムトラベルというものが出てきましたが、もし時間を移動できればと考えることは、現段階では非現実的と言わざるをえません。大学で物理学と数学を必死で学んできた者としては、もし、過去や未来に行けたならという話を黙って見過ごすわけにはいきません!!
それでは、そういう空想を考えるのはどうでしょうか。非現実的なものでしょうか。
詳しくはとても難しい問題となりますし、先ほどのUの空想に秒で反論したいので簡単に説明していきますね。急いでいますので、間違っていたらスミマセン。

〇タイムトラベルは不可能派の言い分
光の速さ(30万Km/秒)を超えるとタイムトラベルは可能と言われています(詳しくは、特殊相対性理論だけでなく、もっと大きな一般相対性理論まで絡んできますので、ここでは説明しきれません)
では光を超える速さのマシンを作れば可能?と思いがちですが… ここで大きな問題が出てきます。それは、光は質量が0で、速さは30万Km/秒で不変ということです。つまり光速よりも早いマシンを作れたとしても不変でなくてはいけない(エネルギーの問題が出てくるのです)
よって、タイムマシンの製造は不可能となるのです。
※本当はもっと難しい問題ですが、かなり省略させてもらいました。大ざっぱに説明するとこんな感じだと思います。そもそも光の質量が0で速さが30万Km/秒と仮定しての話です。これを仮定しなければ説明は成り立ちませんので、あしからず。

〇タイムトラベルは可能派の言い分
色々な考え方があり、今も優秀な科学者たちが本気で取り組んでいるのですが、簡単な理論を一つだけ紹介します。
空間を超えられるなら、時間も超えられるはずという考え方です。
ここでも、出てきますが、アルバート・アインシュタインは、3次元空間は時間とつながり、時間が4時元として機能していると考えました。アインシュタインが時空連続体と呼んだこの構造が今日の宇宙のモデルとなっていますので、時間も超えられるというわけです。


さて、みなさんはどちらの方が可能性があると思いますか?
どちらの方が夢があると思いますか?

考え方は人それぞれですが個人的には不可能だと考えています。もし可能であるならば、それは、アインシュタインを論破したことになりますし、これだけ完璧な仮説を覆すことは果てしない労力が必要になるでしょう。そして、もはや一般相対性理論は仮説ではないのです。
ゆえに、タイムトラベルは個人的には不可能と言わざるを得ません。

急いで書いたので、誤字、脱字、知識の間違いはお許しください。

あ〜、過去に戻って、宝くじを買いたい かも店F
posted by 正木浩二 at 16:20| Comment(0) | 豆知識